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An Active Planet

Earthquakes M>6 (NEIC) - GPS velocities ITRF2000




A natural laboratory for
continental breakup
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At Depth...
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The “Arican Superplume” and
associated mantle flow
(Behn et al., 2000)
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Thermal anomalies in the upper mantle
below the East African Rift
(Nyblade et al., 2000).



At the Surface...

' Earthquakes

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.



Questions posed

 How do continents break apart to form oceans: physics
of continental breakup? Forces at play / strength of the
lithosphere? Role of deep-earth processes (mantle)?

« Can we quantify the hazards posed by actively
deforming areas?

— Need to measure deformation of Earth surface from
large scale (plate motion) to local scale (individual
earthguakes and volcanoes)

— Satellite geodesy:

—GNSS = provide autonomous geo-spatial positioning with
discrete, global, coverage

—Radar interferometry = provide ground deformation
measurements with continuous, local, coverage



GPS satellites _ GPS satellite
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4 satellites => solve for latitude, longitude, elevation, time

D (t) = pi(t) x%+ (hk(t) — hi(t))x f +ionf(t)+trop‘(t) - N +¢&

Other
Phase — Sat-rec. + Clock + lonospheric Tropospheric Phase noise
measurement - distance errors delay delay ambiguity sources

Precision of phase data ~ 0.1% wavelength => precision of position ~ few millimeters



GPS station in Dar Es Salaam, Tanzania
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Current Plate Motions

Earthquakes M>6 (NEIC) - GPS velocities ITRF2005

Somalia/Nubia Euler poles: * Geologic
2 emiyr ¥ Geodetic
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Training

With the Survey and Mapping With students in the field
Department, Tanzania



On-going Deformation in Afar, Ethiopia

38 40

PR PR

—3 Current velocity
r w.r.t. Nubia
- = Quaternary faults

segments

Pliocene
flood basalts

] \ Oligo-Miocene

14 , Quat. magmatic
ja

border faults

W 4
-‘”r_c?{.?g“.?

Afar: a young volcanic province at the triple junction between

42 44

Assal-Ghoubbét
diking event

Arabia, Nubia, and Somalia plates.




'.':: ; A 'u,_h.

TP AN,
AN 'th ‘Ih
g AN

1 ¥ “-
s

KRB AN
® 20-24 Sep 05|
e 25-29 Sep 05

September 2005: earthquake swarm,
open fissures, small volcanic eruption




Satellite Radar Interferometry

Two successive satellite passes over region of interest, compute range difference
Remove the interferometric phase due to geometry and topography.

If the ground does not move, then residual phase will be zero apart from effects of
environmental and instrumental noise.

If the ground moves between SAR observations, then the residual phase will not be
zero.




Ground displacement: up to 5 m in ~2 weeks

Google

Pointer lat. 14.441160° lon. 38.072551 elevi1323im Streaming |[I]1] 100% Eye alt. 575.50 km
16'May - 28

1 fringe = 2.8 cm displacement in
ground-satellite direction




Largest dyke Iin space geodesy era
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2.5 km3 magma intruded along dyke (Mt St Helens 1980 1.2 km3; Krafla ~

1 km? total).

0.5 km?3 sourced from Dabbahu and Gabho volcanoes at North.

Where does the rest of the magma come from? How are magma
chambers replenished? Where does magma evolve?

Is it over...?
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The “plumbing system” at work

Next 8 months: the magmatic plumbing
system at work (blue areas = inflation,
red = deflation)
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Then a new, smaller, dyke intrusion



A long-lasting volcano-tectonic crisis

ICELAND

Comparison with a similar size
rifting event in Iceland

Briefing Afar authorities (Ethiopia)
about volcanic hazard



On-going activity in Natron rift
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July-August 2007: series of earthquakes followed by eruption of Ol Doniyo
Lengai.
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Climate Change

« 50-year-long drying trend tightly
linked to substantial warming of the
Indian Ocean => by mid-century there
could be a 10 to 20% drying in the
Feb-Apr wet season compared with
the average for the last half of the
20th century (J. Hurrel, NCAR).

» |s Sahel getting rainier? Debated...

» Uncertainties in projections likely to
remain high as long as gaps persist in
collecting meteorological data over
Africa.

« Major difficulty: measuring water
vapor and its interannual to daily
variability --> can be done using
GNSS signals




ENSO and African Climate
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MODIS images of integrated column water vapor
illustrate the interannual variability of the Inter-
tropical convergence zone, linked to El Nino.
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* GPS measurements of tropospheric water
vapor in the SW Pacific showing the 1998
El Nino event.

» High accuracy and stability.

» Continuous time sampling => information at
all temporal scales from diurnal to
interannual variability.



A unified geodetic reference
frame for Africa: AFREF

* Requirements similar to
geophysics

e Other continents:
e Japan > 2,000 GPS
e North America ~2,000 GPS
* Western Europe ~1,000 GPS

 Crucial importance of open data
policy
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Summary

o East African Rift remains the least understood of all major
tectonic plate boundaries with first-order science questions
at stake.

« Africa particularly vulnerable to climate change - regional
models have large uncertainties.

o Critical lack of basic quantitative data:

— How fast do plates move, is there magma movement at depth?

— Amospheric water vapor: interannual variability and diurnal cycle
data crucial to model long term climate in Africa.

« GNSS in Africa is key component for environmental
monitoring: solid earth deformation and climate trends.

« Added benefits, e.g. unified reference frame for mapping
applications.
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