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Abstract 
 
Quantification of forestland cover extents, changes and causes thereof are currently of global 
research priority. Remote sensing data plays a significant role in this exercise. However, in-situ 
and supervised-based forest dynamics mapping from remotely sensed data are limited by lack of 
ground-truth data collection logistics and spectral-only based methods respectively. In this paper, 
first results of a methodology to detect change/no-change based on unsupervised multiresolution 
image transformation are presented, as a cost-effective strategy for forest inventory data 
acquisition in the context of sustainable development are presented. The technique combines 
directional wavelet transformation texture and multispectral imagery in an anisotropic diffusion 
aggregation algorithm, using unsupervised self-organizing feature map neural network 
implementation. Using Landsat TM (1986) and ETM+(2001), logical-operations based change 
detection results for part of the Complex Mau forests in Kenya are presented. An overall accuracy 
for change detection of 88.4% and kappa of 0.8265 was obtained. The methodology is able to 
predict the change information a-posteriori as opposed to the conventional methods that require 
land cover classes a-priori, for change detection. Most importantly, the approach can be used to 
predict the existence, location and extent of disturbances within natural environmental systems. 
This system is to be used in the National Forestry Inventory Systems Project for applications in 
modeling of: climate change; national water resources budget; desertification and agricultural 
yield systems for food security. 
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1. Introduction 
Reliable and updated forest information is necessary for many scientific and land 

management applications. For example, monitoring and mapping of afforestation, reforestation 
and deforestation (ARD) processes plus related land cover changes is important for national 
carbon budget inventories (potential source and sink function of vegetation as determined in the 
Kyoto protocol) and for regional biosphere modeling. However, lack of reliable data and survey 
information on forest structural changes or ARD has made the estimation of areas of intact forest 
and/or under land use change and their relation to economic indicators surprisingly difficult to 
establish. Given the importance of land cover and land use change data in conservation planning, 
reproducible, accurate and efficient techniques to detect forest change from multitemporal 
satellite imagery are desired for implementation by local conservation organizations.  

Locating and characterizing areas of significant forestland cover change using remotely 
sensed data is important for many applications (Fung and Ledrew, 1988). These include: 
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resource management (Pilon et al., 1988; and Collins and Woodcock, 1994) crisis management 
and response, urban planning (Lo and Shipman, 1990) and impacts of human activities on the 
environment (Leemans and Zuidema, 1995; Adams et al., 1995). Forestland cover information is 
often derived from remotely sensed images using classification algorithms e.g. (Franklin et al., 
1986; Mickelson et al., 1998), many of which require a substantial amount of reference data 
(Townshend, 1992; Hall et al., 1995). One of the challenges to the management of forestland 
cover is the lack of reliable and adequate reference data. In areas where some reference data 
exists, they may have been collected in different ways and may have different levels of accuracy. 
Such heterogeneity limits efficiency, consistency and accuracy in deriving forest information. 
Another problem with most of the traditional procedures is that they are time consuming and rely 
heavily on human recognition. 

Traditionally used techniques for forest change detection are able, with different levels of 
accuracies, to timely and effectively answer the following questions with regards to change 
detection, which are necessary for efficient environmental change understanding and modeling: 
(a) whether there is change or no-change within a given timeframe, (b) where change has 
occurred and the spatial extent of the change, and (c) the kind of change, that is categorization of 
change. From remote sensing data, general land cover change detection and analysis faces the 
following problems: (a) each imagery source has its own geometric, spatial, temporal and spectral 
characteristics. (b) Noise is often visualized as change and is non-linear for every sensor, and (c) 
data amounts used in change detection are becoming much voluminous. 

Current change detection systems use a variety of image processing tools to make changes 
visible, but typically rely on manual interpretation by expert analysts to delineate the change 
areas. Most systems look for changes between two images: one "before" and one "after". These 
approaches may only work well for research projects that are geographically limited or one-time 
efforts, but for a production environment, an automated process is required that locates only 
those areas of change that are significant to a specific application (Singh, 1989). In Sgrenzaroli et 
al. (2002), it is mentioned that the most widely used unsupervised change detection techniques 
involve the pixel-by-pixel comparison of the candidate multitemporal images pairs.  

   
 Objectives of this research 

 
Objective of the current work is on the derivation of a general framework for the identification 

of changes in forested areas using optical images, with minimal a-priori class information. In 
particular, the technique can be applied to pairs of multitemporal images, and for each pixel, the 
objectives are to determine whether the corresponding area (i) was covered with forest in both 
dates, (ii) was not forested in both dates, (iii) was cleared between the two considered dates, or 
(iv) vice versa. The proposed technique requires some pre-processing steps, which are: 
geometric correction and radiometric normalization selection of the band(s) for texture extraction 
and spectral input. The entire approach is composed of three steps: (1) 2D-discrete wavelets 
transform (DWT) decomposition of the band selected for texture extraction, considering 5 
different scales and three detail images (horizontal, vertical and diagonal) for each scale or level. 
(2) Integrated smoothing of texture and spectral data, by means of anisotropic diffusion. This step 
aims at reducing noise without blurring edges, and it is implemented using the self-organizing 
feature map (SOFM) neural network. The multitemporal images are processed separately. (3) 
Change detection - this is achieved by: (i) classifying each image obtained from the previous step 
in forest/not forest by comparing it to a threshold, (ii) identifying the areas of change by 
comparing the previously achieved classification. Finally the accuracy of the results is assessed 
through the computation of the overall accuracy and kappa index and class-producers’ and users’ 
accuracy. 

We illustrate the workability of this approach using 512 x 512 pixels (15.36 km x 15.36 km) of 
Landsat TM and Landsat ETM+ datasets dated 1986 and 2001. Figure 1 gives a summary of the 
workflow for this research. In Figure 1, TDM refers to the transformed divergence measure for 
class separability. The terms smoothing, aggregation and segmentation are used interchangeably 
in this paper, to mean the same thing. 
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Figure 1. Proposed approach: block diagram. 
 

2. Data and study area 
 

2.1 Study area 

The test area for this study is situated in the Mau complex forests, which lies in the Kenyan 
Rift Valley. In the last 25 years there has been a rapid increase in human settlement and urban 
related activities, great amounts of deforestation with little forestation or afforestation and 
agricultural activities mostly in the eastern part of the escarpment (Figure 2). This has caused 
immense environmental degradation within this region that has called for rapid monitoring 
(identification and quantification) of the changes. Conventional methods like supervised post-
classification change detection that require ground-truth information prior to the change detection 
procedure, may not be suitable for the assessment of this area due to the economic logistics 
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associated with remoteness and data. Alternative techniques, that are less demanding and 
flexible in terms in input data and human interactions, are thus sought for. 

 

  
(a) (b) 

 
Figure 2. Lake Nakuru Basin and part of the Mau Complex. Forestland covers in 1970 (a) and in 
1992(b). The rectangle shows part of the Mau Complex assessed in this study. Green color 
shows the forest areas, blue represents water (lake and rivers). (Source: Baharini Wildlife Trust.) 
 

2.2 Experimental Data 
 

The study site (Figure 3) chosen to test the proposed methodology approach represents part 
of the Mau complex forests. The size of the site chosen was 512 pixels x 512 pixels of the 30 m - 
Landsat TM and ETM+ dated 1986 and 2001 (Table 1). This region was subset from an entire 
(full) Landsat scene (path 169, row 60). 

 
Table 1. Summary of experimental data. 

Test Site Data  

(Satellite & Reference) 

Size Resolution  Date of 
Acquisition  

the Mau 
escarpments 
in Kenya  

Landsat ETM+  512 x 512 30 m x 30 m 3Apr2001 

Landsat TM    512 x 512 30 m x 30 m 28Mar1986 

1: 50, 000 (TOPO) 

1:250,000(VEGETATION) 

1 Sheet 

1 Sheet 

Scale: 1:50,000 

Scale: 
1:250,000 

 1997 

 1986  

 

2.3 Data preprocessing – geometric correction and radiometric normalization 
 

Geometric correction is the process for rectifying the common areas test data to the same 
projection system for producing spatially and geometrically correct land cover information. The 
study data was geometrically rectified to the Universal Transverse Mercator (UTM) map 
projection system, zone 37-east, using GCPs collected mostly around the accessible lower parts 
of the mountain. A 1997- 1: 50 000 topographic map and DGPS derived GCPs of the study area 
were used to geometrically rectify the Landsat 7 Enhanced Thematic Mapper Plus (ETM+). The 
RMSE report was 0.2 pixel. The Landsat 5 Thematic Mapper (TM) was then rectified to the ETM+ 
through image-to-image registration with RMSE of 0.25 pixel. Both the images were resampled to 
30 m x 30m using the nearest-neighbor resampling method and for both images the 
transformations were done using the first-order polynomial. The nearest-neighbor resampling 
conserved the original values of the images much better, through visual inspection of the 



 5 

resampling results, than the bilinear interpolation and cubic convolution because in the test area 
(Figure 3), there was very distinct (spectral) boundary between the forest and the no-forest 
extents making the closest pixel assignment more reliable than using 2 x 2 or 4 x 4 neighbors, 
which seemed to distort the edge pixels. 

 

  
(a) (b) 

Figure 3. Study site-section of the Mau escarpments (512 x 512 pixels). (a) 1986-Landsat TM 
bands 543 and (b) 2001-Landsat ETM+ bands 543. 
 

2.4 Texture and spectral band selection 
 

To determine the optimal bands for texture mapping and spectral separation of forest from 
non-forest, the average of the variance within each class (5-forest classes and 3-non-forest 
classes) was computed. The classes were chosen based in the land cover type and geographical 
location within the test image. Further, using ellipses, the separability of signatures was evaluated 
by displaying the ellipses or rectangles describing the signatures in a two-dimensional feature 
space. The results for the average variance comparison are presented in Table 2. In Table 2, the 
5 forest representative classes were combined together and the 3 non-forest representative 
classes were also combined to one class so as to clearly visualize the overall separability 
between these two classes. 

 
Table 2. Average variance for the forest and non-forest classes in the visible, NIR and MIR bands. 

Bands and 
wavelengths 

Blue 
(0.45-0.52) 

Green 
(0.52-0.60) 

Red 
(0.63-0.69) 

NIR 
(0.76-0.90) 

MIR1 
(1.55-1.75) 

MIR2 
(2.08-2.35) 

Forest 12.10 9.06 66.42 262.31 227.58 20.61 

Non-forest 33.18 18.75 43.17 46.92 204.12 106.92 

 
 

3. Multispectral-multitemporal imagery smoothing 
 
3.1 Multiresolution wavelet decomposition (MWD) 
 

A detailed theoretical analysis on wavelets transformation and its application to remote 
sensing data analysis can be found in (Ouma et al., 2005). Deviating from the monoscale-based 
occurrence and co-occurrence textures (Mallat, 1989) developed a theory for multiresolution 
signal decomposition using the orthonormal wavelet basis. The multiresolution wavelet transform 
decomposes a signal into low-frequency approximation and high-frequency detail information at 
successively coarser resolutions (multiscale texture concept). The resultant approximation is then 
decomposed into second level of approximation and detail, iteratively. MWD in discrete-time 
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corresponds to successive band filters decomposing the signal into details and overall pattern. It 
separates high from low frequencies recursively using the same transform at the new scale 
(Carvalho et al., 2001). The result is multiscale image texture represented in the vertical, diagonal 
and horizontal directions. The MWD results are to be used in the next phase of the anisotropic 
diffusion.  
 

3.2 Multispectral anisotropic diffusion (MAD) 
 

In this paper, we propose the anisotropic diffusion scheme, first proposed by Perona and 
Malik (1990), to tackle the problem of noise reduction and segmentation via edge preservation 
and homogenous land cover derivation in multitemporal forest land cover data. This approach is 
basically a modification of the linear diffusion (or heat equation), and the continuous anisotropic 
diffusion given by: 
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where  ),( yxIt is the is the image at time t, div the divergence operator, ),( yxIt the gradient 

of the image, and ),( yxct  the diffusion coefficient. If ),( yxct a constant, then Eq. 1 is reduced to 

the isotropic diffusion equation, and is equivalent to convolving with a Gaussian. The idea of 

anisotropic diffusion is to adaptively choose tc  such that intra-regions become smooth while 

edges of inter-regions are preserved. The diffusion coefficient tc  is generally selected to be a 

non-negative function of gradient magnitude so that small variations in intensity such as noise or 
shading can be well smoothed, and edges with large intensity transition are distinctly retained. 

 

3.2.1 MAD parametization 
 

If we let ),( yxIt be a gray level image at coordinates ),( yx of a digital image at theoretical 

time t , and ),(0 yxI be the original input image, the continuous anisotropic diffusion in Eq. 1 can 

be discretely implemented suing 4-nearest neighbors (Fig. 4a) and the Laplacian operator 
(Torkamani-Azar and Tait, 1996) as: 
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where ),( yxI i

t , i=1, 2, 3 and 4, represent the gradients of the 4-neighbors in the north, south, 

east and west directions, respectively, as shown in Fig. 4a: 
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and ),( yxci

t  is the diffusion coefficient associated with ),( yxI i

t , and can be considered as a 

function of the magnitude of gradient ),( yxI i

t , i.e., 
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Figure 4. (a) Visualization of 2D diffusion among pixels in an image – the basic cell of 4-nearest 
neighbors lattice. 
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In the anisotropic diffusion model of Perona and Malik (1990), the parameter  is a constant, 

and must be fine-tuned for a particular application.  is a threshold parameter, which influences 

the anisotropic smoothing process. It is also called the diffusion constant or the flow constant.  in 

the diffusion coefficient function acts as an edge strength threshold. If the  value is an overly 
small constant in all diffusion iterations, the diffusion will stop in early iterations and the 
background or truly homogenous areas cannot be sufficiently smoothed. This may cause false 

rejection of faultless homogenous land cover surfaces. Reversely, if the  value is a large 
constant, the diffusion process will over-smooth in early iterations and both the background 
texture and edges will be removed, and this may cause false acceptance. Figures 4b depict the 
diffusion coefficient functions of Eqs. (5) and (6), respectively. 

 

          
 

Figure 4. (b) Diffusion functions plotted as a function of image gradient, where )()( IgsC  , 

and s . (c) Flow functions plotted as a function of image gradient, where )()( Is  , 

and s .  

 

If we define )( I to be a flux defined as IIgI  )()( , which can be expressed as 

)(1   and )(2  , for 
1c  and 

2c  respectively, then the following plots (Figure 4c) are obtained. 

Simplifying further the equations above for graphical representation, we denote ),,( tyxIh  , 

we can denote /hs  , we obtain the following expressions for the conductivity functions: 

 2

1 s-exp  ),,( tyxc  and  2

2 11/  ),,( styxc  . 

 

 
Figure 4. (c) Flow functions plotted as a function of image gradient, where )()( Is  , and 

s .  
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A large flux value indicates a strong effect on smoothness. Fig. 4c gives the graphs of the flux 

functions of the respective diffusion coefficient functions in Eqs. (5) and (6). For a given  value, it 
can be seen from Fig. 5 that the diffusion coefficient function of Eq. (5) drops dramatically and 

approximates to zero when the gradient magnitude I is larger than 2, i.e. the diffusion stops 

as soon as 2I . The maximum smoothness occurs at 75.0I  as shown in the 

corresponding flux function. The diffusion coefficient function of Eq. (6), instead, decreases more 

gradually even when 2I . Its corresponding flux function shows that the maximum 

smoothness is at 1I . Compared to Eq. (6), Eq. (5) privileges high-contrast edges over 

low-contrast ones. In the application of forestland cover segmentation, diffusion coefficient 
function of Eq. (6) is more desirable than that of Eq. (5), as it will favor even low-contrast edges 
and adequately considers the large homogenous patches. 

The forestland cover surfaces involve inhomogeneous textures in nature and some 
homogenous regions may contain noise. The diffusion coefficient function of Eq. (5) may cause 
the diffusion process to stop in the early iterations, and the background spectral-textural will not 
be sufficiently removed. Given that the gradient threshold is a constant, the selection of a best 

 value becomes extremely crucial. A large   value will over-smooth both background 
information and edges. An overly small  value disables the diffusion process and the unwanted 
background texture will be preserved. 

In order to alleviate the limitations of the use of a constant  , we used the annealing nth root 
function for the gradient threshold  , to determine the suitable thresholds. Its value will be 
reduced as the diffusion iteration increases. In each diffusion iteration, the gradient magnitude, 
that is intensity-contrast-texture, will be reduced in the filtered image. A constant  will eventually 
smooth out the irrelevant information like noise. However, as the gradient threshold adaptively 
decreases with the increment of iterations, the diffusion process has no effect on the 
inhomogeneous regions while it can gradually remove the background textures as long as the 
decrement of gradient magnitude in homogeneous regions is competitive with the decrement of 
the value. The annealing nth root function used in this study is defined by: 
 

)/1()0()( ntt           (7) 

 

where )(t is the gradient threshold at iteration t, )0( is the initial value, and n is a positive 

integer. Figures 5(a)-(d) presents the plots of four root functions with n=1, 2, 3 and 4 respectively. 

 

  
              (a)              (b) 

  
             (c)               (d) 

If  <<, under-segmentation occurs. 

Maximum flux is at 1 from c2. If  >>, under-segmentation occurs. 
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Figure 5(a)-(d). Plots for the first four root functions from (a)-(d) for n = 1, 2, 3 and 4 respectively. 
t is the number of iterations; n is the level or scale of diffusion and is the gradient threshold. 
 

Note how the shape of the function is affected as the value of n is changed. The graphs show 
that a small n, such as n=1, will make the value drop rapidly and cause the diffusion process to 
stop at a small number of iterations t. As n increases, the value will decrease gradually and 
result in fast smoothness in a small number of iterations. An overly large value of n may over-
smooth both background textures and subtle defects in early iterations. From the results in Figure 

5, n=3 gave the optimal solution whereby the maximum diffusion occurs at approximately 1 . 
Thus the used diffusion function was defined by: 
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Since the gradient threshold value is adaptively decreased as the iteration number 

increases, the selection of the initial value )0( is not as crucial as that of a constant in the 

Perona and Malik’s model. As seen in 4c, the flux function of the diffusion coefficient in Eq. (6) 

shows that the maximum smoothness is given by 1I . We therefore set the initial 

value )0( of the annealing cubic-root function to the average gradient magnitude, Eq. 9, of the 

whole image used to control the diffusion the spectral diffusion, and compared this with other 
possible image spatial parameters like spectral and textural gradient information. 
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For example, the implementation, for an image NyxyxI  ,0)},,({ , the wavelet transform 

produces four components {LL, LH, HL, and HH}, LL corresponds to the smoothed image, HL 
contains the horizontal edges, LH contains the vertical edges, and HH contains edges not parallel 

to the axes. The estimation of conduction parameter (x,y) based on wavelet transform upon 
experimentation is given by:  
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where 0 is the 90% value of average value of ),( yxI i
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optimal iterations. A thorough experimentation showed that the selected )0( works successfully 

for this application. This was determined purely based on empirical testing ad may vary from one 
application to another. Thus Eq. 9 may be considered as a more universal approach. 
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of the discrete version of the anisotropic diffusion equation if the weight (wt) is taken as the same 
as the diffusion coefficient c. This weight factor can be modeled in the case remote sensing data 
as the input texture features at the corresponding levels of diffusion or scale, which is 

represented by the conduction parameter . At each level, each band is smoothed based on the 
homogeneity of the input directional textures. 
 

3.3 Self-organizing feature map (SOFM) 
 

The SOFM is trained iteratively. In each training step, one sample vector x from the input 
data set is chosen randomly and the similarity between it and all prototypes of the map are 
calculated using a certain distance measure, typically Euclidian distance. The unit whose 
incoming connection weights have the greater similarity with the input pattern x is called the Best-
Matching Unit (BMU), denoted as c: 
 

}{min i
i

c mxmx          (11) 

 

where  is the distance measure. 

 
After finding the BMU, the prototype vectors (or connection weights) of the SOFM are 

adjusted. SOFM creates a topological mapping by updating not only the BMU’s weights, which 
are adjusted (i.e. moved in the direction of the input pattern by a factor determined by the learning 
rate), but also adjusting the weights of the adjacent output units in close proximity to the 
neighborhood of the winner. So not only does the BMU get updated, but the whole neighborhood 
of output neurons gets moved closer to the input pattern. 

After presentation of the data vector x, the weight vectors of the map neurons are updated 
according to the learning rule. The SOFM update rule for the weight vector of neuron i is:  
 

)]()())[(()()()1( tmtxtrhttmtm iciii         (12) 

 

where t denotes time, (t) is the learning rate, that is a monotonically decreasing function of time 
between (0,1) and regulates the amount of the weight update at time t, and hci(r(t)) is the 
neighborhood kernel centered on the winner unit (the BMU) c, with neighborhood radius r(t), 
which typically decreases with time. There are two alternatives for performing the prototype 
vectors' update: sequential and batch training algorithms (Kohonen, 2001). The algorithm utilized 
in this work is the sequential one. 
 
Generalized SOFM Algorithm 

Step 1: Initialize the synaptic weights of the network, Vj(0), to small, different, random numbers at iteration k = 0. 
Step 2: Draw a sample y from the input set. 
Step 3: Find the best-matching (winning) neuron r( y) at iteration k, using the minimum distance Euclidean- 
    criterion 

       },.....,2,1min{)( LjVyyr j  . 

Step 4: Update the synaptic weight vectors using the update formula 

  )( )()(

1

)(

k

yr

kk

yr

k

yr VyVV   , 

  )()( 21 k

j

kk

j

k

j VyVV    

  )()( kj yr , 

  where )()( kyr is the neighborhood of r( y). 

Step 5: Increment k by 1, goto step 2, and continue until the synaptic weights Vj reach their steady state values. 
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4. Methodology implementation 
 

4.1 MAD-SOFM implementation 
 

Based on the SOFM concept, the aggregation process using the multiscale anisotropic 
diffusion is accomplished by constructing multiscale or pyramid structure with successive 
anisotropic diffusion of the original image and then linking nodes at each level to the final node at 
root level. The node value at (i, j) of level l is initialized by anisotropic diffusion result in the 4-
directions or nearest-neighbors level of level l-1. The root level can be selected for segmentation 
and thus, the root level determines the number of final segments. Generally, linking process 
where node values are updated and each node is inked to one of the root node is iteratively 
performed; each node is linked to the father that has the root value closest to its value, the node 
value is updated based on the node values of its sons, and finally, root values are assigned to the 
descendent nodes successively, as in Figure 6. 
 

 
Figure 6. Structure of the SOM-NN consisting, in principal of: input layer - image wavelets textural 
and spectral information and output (Kohonen) layer – smoothened multiscale visible, NIR and 
MIR bands. 
 

In summary, MAD-SOFM algorithm modifies the pixel values of the input image by 
consecutive weighted averaging with neighboring pixels. The rate of smoothing is a function of 
the sum of the local spectral and textural similarity. The similarity values are scaled by the 
spectral rate and textural rate, respectively. The following are the main characteristics of the 
applied MAD-SOFM algorithm:  

(i) Simultaneous modification of all input spectral bands (multispectral anisotropic 
diffusion). 

(ii) Operation at five levels of scale/resolution of the multispectral image. Each network 
level is a two dimensional array of nodes containing the current modified image at a 
given scale and location. The bottom network level consists of one node for each 
pixel in the full scale (initial image). This level is initialized using the input multi-
spectral image. Successive levels undergo a 2:1 downsampling.  

(iii) Both spectral and texture information of images are used to determine the amount of 
modification at a given scale and location. Two kinds of data are used in this step, (1) 
multispectral images of two dates, three bands (3,4,5) for each date, and (2) five 
successive levels of texture maps (consisting of three detail images for each level), 
resulting from wavelet transform. Considering the largest detail image, which 
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contains half of the pixels and lines of the initial image in wavelet transform, the 
window size of the initial image for segmentation, was 256 pixels and 256 lines 
(equal to the largest detail image resulting from wavelet transform). The algorithm 
was run for the multitemporal images separately at five levels using the same 
parameters. 

 

5. Results 
 
5.1 Wavelets transformation results 

 
The db8 (Daubechies, 1992) wavelet filter coefficients as in MATLAB WaveLab were chosen 

based on earlier experiments (Ouma et al., 2005) to create multiscale texture maps resulting in a 
set of detail images at different scales. Detail images occur in groups of three (horizontal, vertical 
and diagonal) at each scale. The first group of detail images will be of size P/2 pixels and L/2 
lines from the initial image of P pixels and L lines. The nth group will be of size P/(2^n) pixels and 
L/(2^n) lines. The transformation was carried out at 5 scales for both data sets. In multilevel 
segmentation using anisotropic diffusion technique, the first 5 groups of detail images are used as 
input texture maps. 
 

5.2 MAD-SOFM results 
 
5.2.1 Testing of the MAD-SOFM performance 
 

For the MAD-SOFM performance evaluation, a subset of band 4 (NIR-band) of the latest 
Landsat data, that is 2001 ETM+, was selected as test area. The results for the selection of 
optimal parameters were evaluated via boundary overlay, of the subset image, of manually 
delineated boundary and diffusion or segmentation output boundaries, for the 5 levels. First, the 
ground truth feature of a geometrical region is extracted manually from a test image, and then 
compared with the results extracted through segmentation results. Next, the deviation of the 
segmented feature from the original feature was numerically evaluated. For this, two features 
were overlapped and their boundaries were compared. Then, the numbers of pixels in the interior 
and exterior of the original feature that is not matched in the segmented feature were counted as 
the interior and exterior error, respectively. That is, the results were compared in terms of interior-
exterior boundary geometric errors (outliers). The results are presented in Table 3 for the original 
imagery against the five-levels. It was found that level 3 gave minimal boundary errors, as 
compared to the manually derived portions. Level 1 and level 5 gave the poorest results, of 
course owing to the observations already discussed above. The results in Table 3 are 
comparable to those of Figure 7. Implying that for n=1, there is an obvious pre-mature 
segmentation effects, irrespective of the number of iterations. 
 

Table 3. Evaluation of segmentation performance by the multiscale anisotropic diffusion. 

Segmentation level Interior Exterior Total error 

Level-1 911 843 1754 
Level-2 209 120 329 
Level-3 99 107 206 
Level-4 112 143 255 
Level-5 459 302 761 

 
5.2.2 MAD-SOFM output results 
 

The output results for this phase are 5-levels or scale with level 1 being of size 256 x 256; 
level2 – 128 x 128; level3 – 64 x 64; level4 – 32 x 32; and level5 – 16 x 16. Each level contains 



 14 

three bands corresponding to the selected bands 3, 4 and 5. Not all the levels are relevant in 
mapping forest and no-forest information. Thus by computing the TDM separability between the 
two classes (forest and non-forest) at each level for each band, we statistically determine the 
optimal or most informative level amongst the five. The average variances for the test classes 
were also computed in the respective output bands. The TDM average was computed as follows: 
first, for each forest class, its separability (TDM) with the three non-forest classes was computed. 
The TDM and class average-variances were computed and compared as illustrated in Table 4.  
 
Table 4. Illustration of TDM computation procedure and class average-variance comparisons. 

 
On the use of TDM and class average variance. Example illustration with band x and level y, 
whereby y=1,2,3,4,5 and each y has three bands (x=1,2,3 for each level). 
 

Forest 

(Fi) 

Non-Forest 

(nFj) 

TDM between 

(Fi and nFj) 

Variance for Fi 

F1 nF1 TDM11 TDM12 TDM13 Average TDM1 
2

11:1 bandlevelF   

F2 nF2 TDM21 TDM22 TDM23 Average TDM2 . 

F3 nF3 TDM31 TDM32 TDM33 Average TDM3 . 

F4  TDM41 TDM42 TDM43 Average TDM4 . 

F5  TDM51 TDM52 TDM53 Average TDM5 
2

11:5 bandlevelF 
 

Example: For level 1, band 1 (L1, B1) TDML1,B1_AVERAGE VARL1,B1_AVERAGE 

 

The TDM_AVERAGE are plotted as in Fig. 11. To avoid multiple variances, we only state the 
VAR_AVERAGE performances. (The same concept of average variances is used in Table 2). 
 
TDM11 is derived from F1 and nF1 
TDM12 is derived from F1 and nF2 and  
TDM13 is derived from F1 and nF3 
. 
. 
and so on for the rest of the Fi -classes. 
 

This resulted in three TDM measures for each forest class, for every band in a given level. 
This was then averaged to give a single TDM measure per forest class such that for band i in 
level j, five TDM measures (corresponding to the five-forest classes) were obtained and the 
average taken. These results were plotted as shown in Figure 7. The average variances were 
also computed in a similar manner for the forest classes only. Figure 7 shows the TDM results for 
TM and ETM+ datasets respectively. 
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TDM between forest and non-forest for TM and ETM+
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Figure 7. TDM between forest and non-forest classes for TM and ETM+ for the five levels of 
diffusion. B1, B2 and B3 refer to TM and ETM+ bands 3, 4 and 5 respectively. 

 
Overally, level 3 gave the highest TDM meaning highest separability between forest and non-

forest (Figure 8 for TM and ETM+ results). Level 1 had the least separability with TDM values 
lower than 0.500, followed by level 5. Levels 2 and 4 were the only levels that comparable with 
level 3. From the above results, the third scale/level gave the highest separability between the 
test classes. This observation was also confirmed by comparing the average variance for the 
levels 3 and 4 diffusion results for the forest classes. Level 3 gave a higher average variance than 
level 4.  
  
  

                  
                                   (a)                                                                           (b) 
Figure 8. Anisotropic diffusion results form (a) TM image and (b) ETM+ image presented as RGB 
for levels 1, 2 and 3 respectively.  

 
As the levels increases from 1 through 5, the nature of the aggregation of neighboring pixels 

also changes. The results of the different levels are influenced by the scale or resolution of the 
texture information. Level 1 result corresponds to the initial network output. Obviously as already 
discussed, as n increases from 1 through 5, there is observed pre-mature termination of the 
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segmentation process, resulting into level 1 results. Stability is gained at level 3 and over-
segmentation is observed past this level 3. Thus from level 4, there is evident on-set of over-
aggregation such that the well aggregated features at level 3 begin to be disintegrated. 
 

6. Multiscale change detection based on logical modeling  
 

6.1 Logical modeling – concept and formulation 
 
Change detection is derived from the segmented imagery. We introduce the use of logical 

modeling (LM) concept in change detection. LM is considered as formalism for reasoning under 
uncertainty, with special advantages in its treatment of ambiguous data and the ignorance arising 
from or about it, as is demonstrated below. In our case, we have two hypothesis or subsets 
{forest (F), non-forest (nF)}, the plausible combinations upon change/ no-change are {[F, F], [nF, 
nF], [F, nF], [nF, F]}. These sets imply that between two temporal intervals, it is possible to have 
no-changes [F, F] and [nF, nF], or changes of the order [F to nF] and [nF to F]. Polygons or theme 
maps, are generated for reasoning from the {F} and {nF}. Logical operations are performed on the 
database {[F, F], [nF, nF], [F, nF], [nF, F]} bitmap segments with the following “boundary” condition: 
 

1]},[],,[],,[],,{[ FnFnFFnFnFFFL       (13) 

 
This boundary condition (Eq. 13) states that within the two time periods, the expected 

probability for change and no-change irrespective of any other conditions is constant and equal to 
1. 
 

6.2 Theme map generation 
 

In order to quantify the changes, allocation of a unique value to each smoothed area 
(representing one class) is required. Because the forest/non-forest areas have been isolated via 
the diffusion smoothing procedure, it is direct and easy to determine the threshold DN values that 
define these forest and non-forest regions. This was achieved by comparing: density slicing, k-
means clustering and histogram for the forest/non-forest regions. The former two methods gave 
similar results, which were then used in this study. Note that level 3 results consisting of VIS, NIR 
and MIR were used in this stage. The thresholding were then used to allocate a unique value to 
the range of values representing forest areas.  Then the logical operation NOT was applied to 
separate the forest class from non-forest areas. Figure 9a and 9b shows the results of this 
procedure for the TM and ETM+ data sets respectively derived from level 3 results. 

 

  
(a)                          (b) 

  
Figure 9. Theme map of (a) 1986-TM data (b) 2001-ETM+ images. Green color is forest and 
yellow color represents non-forest information. 
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6.3 Multiscale change detection 
 

Change/no-change theme maps resulting from segmentation are then extracted using the LM 
logical operation on the already created theme maps. The logical AND binary operator separated 
no-change areas of forest and non-forest areas, and logical SUB operation was used to separate 
change areas (forest (F) to non-forest (nF), and non-forest (nF) to forest (F)). With this approach, 
areas with different properties (unknown) are mapped out automatically. A composite of the 
oldest image, which is: TM bands 4 and 5, and channel 1-level3 of ETM+ (Figure 10a), is used to 
visualize the change/no-change. This visualization approach is synonymous to the multitemporal 
hyper-clustering whereby a post classification comparison of is carried out between the time 1 
data and time 1 plus time 2 data sets. This approach gives a quick and rough indication of the 
change/no-change indication, but cannot be wholly relied upon. The false color composite in 
Figure 10a can be cross-correlated to the color information in Figure 10b. It thus acts as 
complementary information to the change/no-change information depicted in Figure 10b. 

The result of this step was a change/no-change map. This map was generalized into the 
following four classes: (1) no-change for forest areas, (2) no-change for non-forest areas, (3) 
change of forest to non-forest areas, and (4) change of non-forest to forest areas. A summary on 
the proportion statistics is illustrated in Figure 10c. 

 

  
(a) (b) 

 

(c) 
Figure 10. (a) False color composite using channel 1 of 3rd scale of ETM+, and bands 4 and 5 
from TM images. (b) LM based change/no-change (transition) map, and (c) legend and land 
cover proportions. 
 

The legend of the classes given in Figure 10c is explained as follows: (i) non-forest - soil, 
pasture and crops; (ii) forest-unchanged – primary forest (preserved tropical rainforest); (iii) 
forestation – needleleaf old and young woody secondary forest cover; and (iv) deforestation – 
same as non-forest. Reforestation took place with different species of trees i.e. from natural 
broadleaves forest to needleleaves pine forest. Thus the observed difference is as a result of 
leaf/height texture of the young and different species. It is also possible to conclude that part of 
the forested land cover had been cleared in between 1986 and 2001 and then reforestation took 
place. This process may be called forest transition. While the excised forest cover is 
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predominantly used for subsistence farming, the other parts of the forest are illegally logged for 
timber and charcoal burning (fuel). This detailed description is not within the scope of the current 
study, however we present the accuracy of the results in the next subsection for accuracy 
assessment. 
 

6.4 Change results accuracy assessment 
 

The results for the four classes (refer to Figure 10c) are presented in Table 5. 
 
Table 5. Contingency table for accuracy assessment. 

Change map class (pixel counts) 
 

 Cover type Non-forest 
(unchanged) 

Deforestation Forest-
unchanged 
(Broadleaf) 

Afforestation  
(Pine) 

Total Producers’ 
Accuracy 
(%) 

 Non-forest 
(unchanged) 

910 20 1 0 931 97.7 

 Deforestation 40 343 72 2 457 75.1 
 

Ground 
reference 

Forest-
unchanged 
(broadleaf) 

0 62 376 14 452 83.2 

 Afforestation  
(Pine) 

0 0 19 127 146 87.0 

 Total 
 

950 425 468 143 1,986  

 Users’ 
Accuracy (%) 

95.8 80.7 80.3 88.8   

 
Overall accuracy = 88.4% and kappa = 0.8265 

 
The overall accuracy achieved was 88.4% (kappa=0.8265). This can be said to be highly 

accurate results especially given the fact that the respective class accuracies were generally high 
as depicted by the users’ and producers’ accuracies and the efforts made to collect the ground-
truth data. 

 

7. Conclusions and some future considerations 
 

The change detection and recognition system developed in this study could reliably detect 
and identify deforested, forested and no-changes as per the accuracy assessment results. 
However, a number of choices has to be made, which also influence the reliability of the results: 
(a) selection of the appropriate bands for texture and spectral information extraction; (b) selection 
of the suitable or optimal detail level to be used for change detection; and (c) threshold selection, 
from the smoothened optimal level bands, to discriminate between forested and non-forested 
areas. The focus in this study is to examine the forested areas. Therefore the selection of the 
optimal scale is tailored to maximization of forest information. Thus at this optimal scale, the 
methodology is expected to work well for any other similar type of forest (species), irrespective of 
the non-forest land cover types. 

The results of the study tried to answer the questions posted in this research as: (a) 
change/no-change detection, (b) where the change occurred and spatial extent of the change, 
and (c) categorization of change/no-change. Using average variance and separability ellipse, it is 
also concluded that the red (band 3), near infrared (band 4) and the mid-infrared (band 5) were 
most significant spectral bands in isolating forest from non-forest regions.  

This system is to be used in the National Forestry Inventory Systems Project for applications 
in modeling of: climate change; national water resources budget; desertification and agricultural 
yield systems for food security. 
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